


Universidad Autónoma de Chihuahua

Facultad de Zootecnia y Ecología

Código: INF 8	.3 FZYE MP 02	Página 1 de 16		
Fecha de Emi	sión: 02/2006	Fecha de Revisión: 26/03/2013		
		№ de Revisión: 3		
Elaboró:	Coordinador			

MANUAL DE PRÁCTICAS DEL CURSO DE QUIMICA AMBIENTAL II

Manual de Prácticas del Curso de QUÍMICA AMBIENTAL II

ELABORADO POR:

M.C. CELIA HOLGUÍN LICÓN FACULTAD DE ZOOTECNIA Y ECOLOGIA, UACH. ENERO 2011

PRACTICA 1

IDENTIFICACION DE UN COMPUESTO ORGANICO

OBJETIVO:

Identificar un compuesto orgánico de un compuesto inorgánico mediante pruebas de combustión.

PRINCIPIO:

Los compuestos orgánicos sufren diversos tipos de oxidación, el más vigoroso es la combustión, ya que se caracterizan por tener carbono como elemento constitutivo indispensable en sus moléculas.

MATERIAL

SUSTANCIAS

Mechero	Fructuosa
Cápsula de porcelana	Almidón
Pinza para cápsula	Algodón
Soporte	Papel
Anillo	Cloruro de sodio
Tela de asbesto	Carbonato de sodio
Espátula	Azufre
•	Urea
	Caseína

PROCEDIMIENTO:

 En una espátula coloque unos cristales de una de las sustancias y manténgala en contacto con la llama de un mechero.

Acido Cítrico

- 2. Anote sus observaciones en la tabla.
- 3. Limpie bien la espátula y repita la operación con otra sustancia y así sucesivamente hasta probar cada una de las sustancias.

SUSTANCIA	Produce carbón al quemarse (Sí o No)	Es un compuesto orgánico o inorgánico
Fructuosa		
Almidón		
Algodón		

Prácticas de Química Ambiental II

Papel	
Cloruro de sodio	
Carbonato de sodio	
Azufre	
Urea	
Caseína	
Acido Cítrico	

1.	En	la	com	bustión	comp	oleta	de	un	hidro	carburc	, se	producen:
2			-:	- d	- l 4: 4							.
۷.	Las	reac	ciones	s de com	ibustic	on sor	1					 -
3.	Com	10	se c	listingue	un	com	puest	to o	orgánico	o de	uno	inorgánico:
4.	Se a	prov	echa/	la energ	ía libe	rada	en la	comb	oustión:			
5.	Se	pue	ede	medi	ir	la	energ	jía	liberad	a en	una	reacción:

MEDICION DEL CALOR DE COMBUSTION

PRINCIPIO:

Con este método se determina el calor de combustión total de un alimento, dicha combustión se lleva a cabo bajo una atmósfera rica en oxígeno y el calor producido se mide en un galvanómetro.

APARATOS

- 1) Calorímetro con bomba de oxígeno.
- 2) Tanque de Oxígeno.
- 3) Cápsula de ignición.
- 4) Hilo para fusión.

- 1. Moler la muestra en un molino de cuchillas con criba de 1mm.
- 2. Pesar la cápsula de ignición y agregar 0.4 g de muestra.
- 3. Aplanar la muestra en la cápsula y pesar la cápsula con la muestra.
- 4. Cortar 5 cm de hilo para fusión y colocarlo en el alambre del aparato.
- 5. Colocar la cápsula en el aparato de Calorimetría y cerrar la bomba.
- 6. Prender el aparato y colocar los alambres de ignición.
- 7. Ajustar el galvanómetro a cero, inyectar 25 atmósferas de oxígeno.
- 8. Apretar el botón de ignición y leer la lectura.
- 9. Sacar el gas de la bomba.
- 10.Lavar el recipiente de la bomba.
- 11. Calcular la energía bruta.

CALCULOS

Peso de muestra = Peso de cápsula con muestra - Peso de cápsula sola

NOTA: Los resultados se pueden expresar como Kcal/g, Cal/g, Kcal/Kg, o Cal/Kg.

DISOLVENTES ORGANICOS

OBJETIVO:

Determinar la solubilidad de varias sustancias.

 0.5 g de Acido Benzoico 9 ml de alcohol etílico 3 g de Azufre 6 ml de aceite comestible 4 ml de Tetracloruro de Carbono 4 ml de gasolina 0.5 g de Azúcar 6 ml de petróleo 3 g de parafina 4 ml de Acetona 4 ml de Benceno

- Mezcle el ácido benzoico con el azúcar. Divida la mezcla producida en dos partes iguales.
- Una porción colóquela en un vidrio de reloj, como muestra testigo, la otra póngala en un tubo de ensayo.
- 3. Agregue 5 ml de alcohol al tubo que contiene la muestra. Agite durante medio minuto.
- 4. Acomode el papel filtro en el embudo y filtra el contenido del tubo. Reciba el filtrado en el vaso de precipitados.

5.	Observa	el residuo	que se	depositó	en el papel	filtro y comp	páralo con la
	muestra	test	igo,	anote	lo	que	observó:

- 6. Numere los tubos y vierta respectivamente, 1 ml de agua, 1 ml de alcohol, 1 ml de Acetona, 1 ml de gasolina, 1 ml de benceno y 1 ml de tetracloruro de carbono. Agregue a cada tubo 0.5 g de azufre; agite y deje reposar. Anote sus observaciones en el cuadro.
- 7. En otros seis tubos vuelva a adicionar lo mismo del paso 6 para realizar la prueba de solubilidad de la parafina, después de petróleo y, por último la del aceite.
- Complete el cuadro; anote si la sustancia es insoluble, PS si es poco soluble y MS si es muy soluble.

DISOLVENTE	AZUFRE	PARAFINA	PETROLEO	ACEITE
AGUA				
ALCOHOL				
ACETONA				
GASOLINA				
TETRACLORURO				
DE CARBONO				
BENCENO				

1. Qué	sustancia	de	la	mezcla	se	disolvió	en	el	alcohol:
 2. Los co	ompuestos no	o pola	res so	on insolubl	es en:				
3. Los co	ompuestos or	gánic	os ge	neralment	e son	insolubles	en:		
4. Las m	oléculas de l	os jab	ones	y deterger	ntes so	on:			

GRUPOS FUNCIONALES

OBJETIVO:

Identificar las propiedades de algunos compuestos orgánicos.

MATERIAL	SUSTANCIAS
40 T has do see	Alaskala (2) a
12 Tubos de ensaye	Alcohol etílico
1 gradilla	Acetona
7 pipetas	Eter etílico
	Vinagre
	Agua
	Formaldehído
	Tetracloruro de Carbono

- Marque los tubos y coloque 5 ml de cada una de las siguientes sustancias orgánicas: etanol, acetona, éter etílico, vinagre, formaldehído y tetracloruro de carbono.
- 2. Determine el color y olor de cada una de las sustancias y anótelo en la tabla.
- Agregue a cada uno de los tubos 5 ml de agua; agite los tubos y déjelos reposar durante un minuto, fíjate en lo que ocurre y registra su solubilidad en agua.
- 4. En los otros 5 tubos coloca también 5 ml de cada una de las sustancias, vacía en cada tubo 5 ml de alcohol y agita vigorosamente.

5. Espera un minuto y observa si ocurre algún cambio en ellos. registra las observaciones.

OBSERVACIONES:

Sustancia	Grupo	Color	Olor	Solubilidad	Solubilidad
	Funcional			en agua	en alcohol
Etanol					
Eter etílico					
Vinagre					
Formaldehído					
Acetona					
Tetracloruro					
de Carbono					

1.	Qué	es	un	arupa	o fu	inciona	аl

- 2. Cuáles son los grupos funcionales derivados de hidrocarburos más importantes:
- 3. En que se diferencia un Aldehído y una cetona:
- 4. A qué familia o función química pertenece el vinagre:

5. Tendrán las mismas propiedades químicas y físicas los compuestos que tienen el mismo grupo funcional:

PRACTICA #5

ALCOHOLES

OBJETIVO:

Determinar las propiedades de alcoholes primarios, secundarios y terciarios.

MATERIAL	SUSTANCIAS			
5 Tubos de ensaye	1 ml de alcohol metílico			
2 Vasos de precipitado	1 ml de alcohol isopropílico			
	(2-propanol)			
5 Pipetas	1 ml de alcohol amílico			
1 Gradilla	Reactivo de Lucas			
	1 ml de alcohol etílico			
	1 ml de alcohol terbutílico			

PREPARACION DEL REACTIVO DE LUCAS:

Para preparar este reactivo se disuelve 35 gramos de Cloruro de Zinc en 25 ml de ácido clorhídrico concentrado.

Este reactivo se utiliza para saber si un alcohol es primario, secundario o terciario. En esta reacción los alcoholes terciarios reaccionan muy rápido y la solución se enturbia, sí el alcohol es secundario, la solución se enturbia después de unos minutos y finalmente en el caso de los alcoholes primarios, la reacción es muy lenta y tal vez sea necesario calentar para que aparezca el enturbiamiento.

PROCEDIMIENTO:

- 1. Numere los tubos y coloque 1 ml de cada uno de los siguientes alcoholes: metanol, etanol, alcohol amílico, isopropílico y alcohol terbutílico.
- 2. Coloque los tubos en la gradilla y perciba el olor de cada uno, registre sus observaciones.

Agregue a cada tubo 2 ml de del Reactivo de Lucas; deje reposar y, a partir de ese momento, mida el tiempo necesario para que aparezca un enturbiamiento de la solución o se separen dos capas. Observe y clasifique cada alcohol como primario, secundario o terciario.

OBSERVACIONES: Complete el cuadro.

Nombre del	Fórmula	Olor	Tiempo de	Clasificación		
alcohol			enturbiamiento			
Metílico						
Etílico						
Isopropílico						
Amílico						
Terbutílico						

CUEST	CUESTIONARIO:									
1. Qué	es ur	n alcohol:								
2. De	los	alcoholes	utilizados,	cuál	es	el	que	tiene	mayor	peso
mole	cular									_·
3. Los alcoholes se caracterizan por tener el grupo funcional										
4. Menciona algunos usos de los alcoholes:										
		· · · · · · · · · · · · · · · · · · ·								

PREPARACION DE JABON

OBJETIVO:

Preparación de un jabón por medio de un proceso de saponificación.

MATERIAL	REACTIVOS			
2 Vaso de Precipitado de 400 ml	Manteca Vegetal			
Matráz Erlen Meyer de 500 ml	Hidróxido de sodio			
Embudo	Etanol al 50 %			
Papel filtro	Agua destilada			
Placa caliente	Solución de NaCl saturada			
Agitador				
Probeta				
Pizeta				

- Coloque 10 gramos de un ácido graso (manteca vegetal, manteca animal o aceite de algodón) en un vaso de precipitado.
- 2. En otro vaso disolver 5 gramos de perlas de Hidróxido de sodio en 25 ml de alcohol al 50% (Precaución: el Hidróxido de sodio es muy corrosivo, se libera calor al añadirle agua).
- 3. Añada la solución de Hidróxido de sodio al vaso que contiene el ácido graso y caliéntelo sobre una plancha eléctrica, agitando para que no salpique.
- 4. Después de aproximadamente 20 o 30 minutos, el olor de la grasa desaparecerá y el aceite se disolverá formando una solución homogénea.

- 5. Enfría la mezcla en un baño de agua fría.
- 6. Añada 50 ml de agua destilada caliente a la solución, luego vierte esta solución en un vaso de precipitado que contenga 300 ml de una solución saturada de NaCl, y agite suavemente.
- 7. Deje que la mezcla se enfríe durante unos minutos y observe.
- 8. Remueva el jabón por despumación de la capa superior, usando papel toalla o papel de filtro, colócalo en un vaso y lávalo 2 o 3 veces con agua bien fría.
- 9. Filtra el jabón precipitado usando un embudo y papel filtro.
- 10. Guarda el jabón que preparaste.

- 1. Escribe la reacción de saponificación:
- 2. Qué es un jabón:
- 3. Usos de los jabones:
- 4. Qué es un ácido graso: